TRENDS IN TROPICAL LMS OZONE (1998-2019) FROM SHADOZ V06 PROFILES: REFERENCE FOR SAGE-BASED SATELLITE PRODUCTS

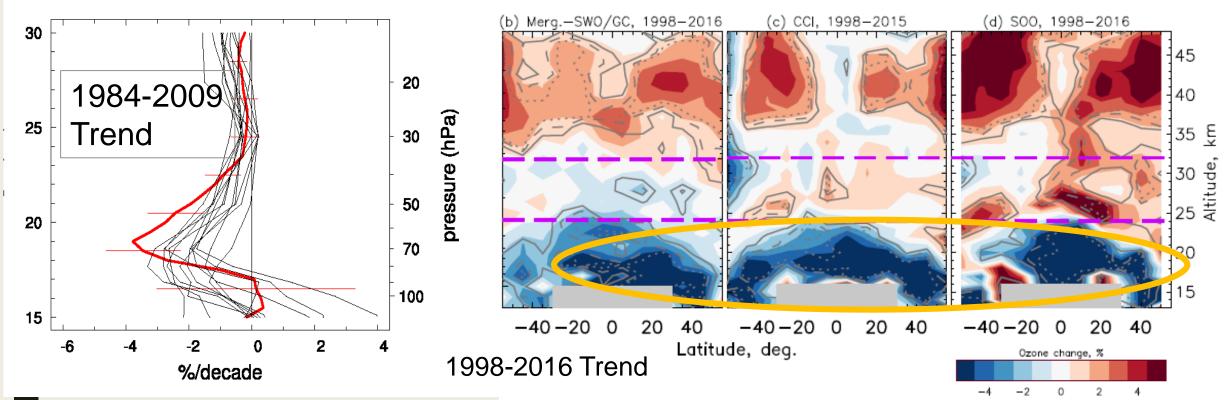
> Anne Thompson (anne.m.thompson@nasa.gov) with Ryan Stauffer, J. C. Witte,^{*} D. E. Kollonige, K. Wargan, J. R. Ziemke

*@ NCAR/EOL; all others at NASA-Goddard, Greenbelt, MD

ISS/SAGE III Science Team, 20-Oct-2020

PAPER IN REVISION https://www.essoar.org/doi/10.1002/essoar.10503415.1

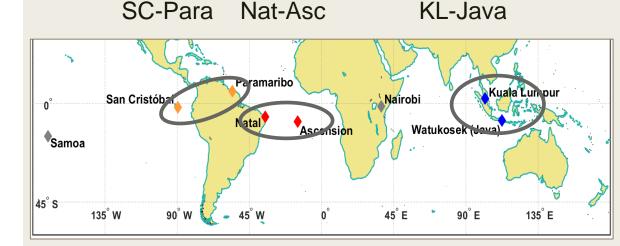
OUTLINE

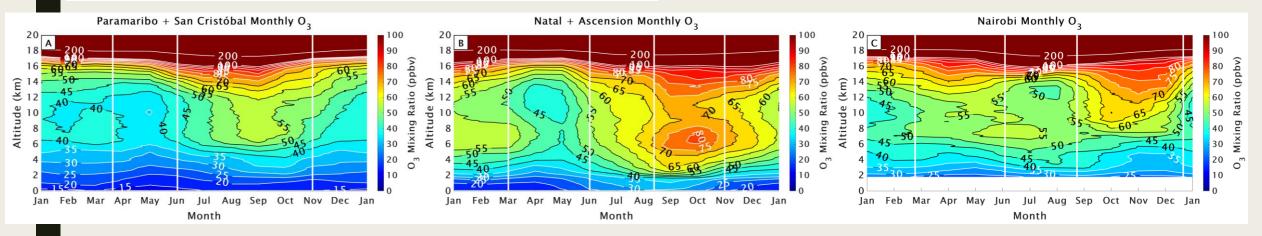


- Background: Tropical LMS (lowermost stratosphere, 15-20 km) ozone trends are important! Context from Pre-ISS/SAGEIII studies
- Climatology of FT (free tropospheric) & LMS O₃ at 5 SHADOZ sites
 - Tropopause Height ("TH," 380K level) from SHADOZ radiosonde
 - "Convective Proxy" = Gravity-wave (GWI) from in O_3 , PT laminae
- Trends (1998-2019) in O₃, GWI, Tropopause Height computed with MLR. Assume QBO, ENSO, IOD oscillations, annual & seasonal cycles
- Results: <u>Regional and seasonally</u> dependent LMS O₃ trends that can be compared to models and satellite "products."

Background: LMS Ozone Trends with SHADOZ and SAGE-based Merged Satellite Products

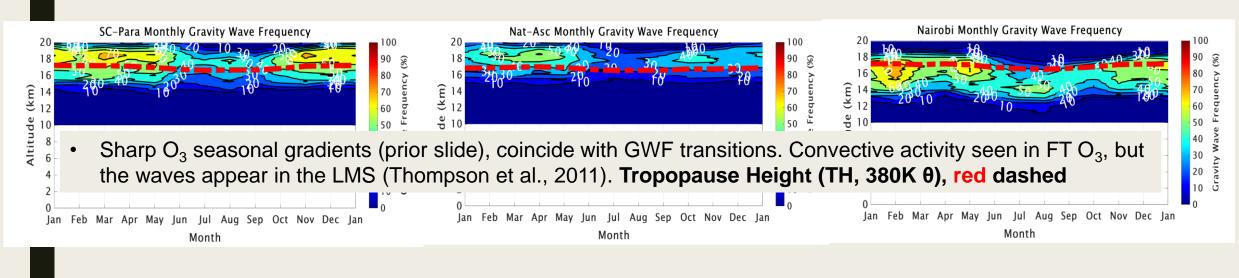
- LEFT. Merged SAGE II-SHADOZ profiles with 1998-2009 from SHADOZ. MLR with MEI for ENSO variability, Randel & Thompson (2011) yields a negative trend, ~-4%/decade at 18 km
- RIGHT. Tropical strat. O₃ "merged products," three with SAGE II => -(2-4)%/dec, 1998-2016 (Ball et al., 2018). Compare MERRA trend, +~5%/decade (Wargan et al., 2018, not shown)


RASA Greened


SHADOZ Climatology: O₃ Seasonal & Regional Variability

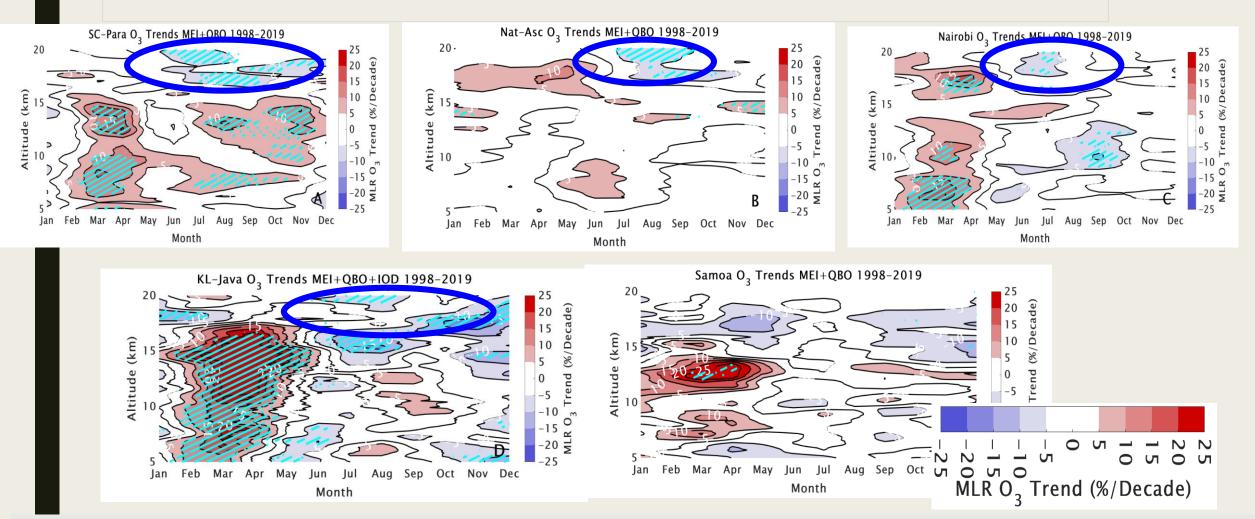
- Use 22-yr SHADOZ data (1998-2019) to determine trends in O₃ and 2 dynamical indicators derived from radiosondes.
- Sonde advantages over satellite data

 (1) More precise O₃ than satellite data in LMS
 (2) Regular fixed site sampling at ~100-150 m
 resolution gives Free Tropos. (FT) and LMS trends
 (3) In-situ profile data, full zonal coverage
- Data presented from 5 "sites" (Right)
- Seasonal O₃ to 20 km (Below)



"Seasonal" transitions, marked by sharp O_3 gradients (white vertical lines), represent alternations in dominant dynamic influences, ie convection vs advected pollution (Thompson et al., 2012)

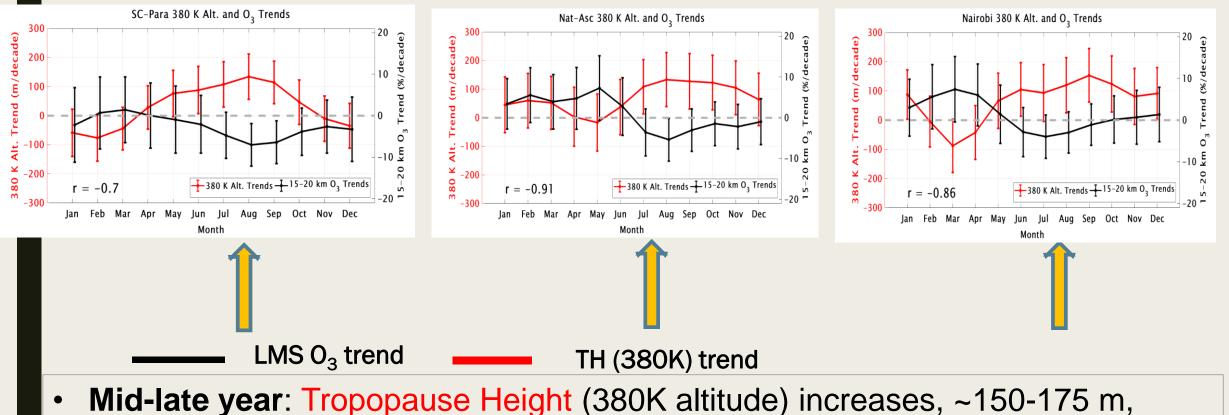
Seasonal Transitions in FT O_3 & Convective Proxy (GWF) Align. TH Annual Cycles Vary Annually (16.5 – 17.3 km)



- <u>Compute Trends</u> in monthly mean O₃, GWF (0.1 km intervals) and TH using GSFC MLR model with typical QBO, ENSO, IOD terms.
- Table (Right) lists 5 station locations, profile #, and terms for best model fit. Last column is annually averaged trend
- One station displays significant annual trend

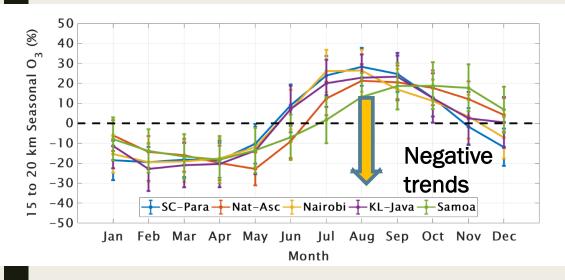
<u>Site</u>	<u>Lat, Lon (°)</u>	Profiles MLR Terms	<u>Ann</u>
SC+Para	5.8, -55.21/-0.92, -89.62	1227 ENSO+QEO	
15-20 km		%/dec	-2.6
Natal+Ascen	-5.42, -35.38/-7.58, 14.24	1436ENSO+QBO	
15-20 km			0.9
Nairobi	-1.27, 36.8	941ENSO+QBO	
15-20 km			1.2
KL+Java	2.73, 101.27/-7.5, 112.6	786ENSO+QBO+IOD	
15-20 km			-2.7
Samoa	-14.23, -170.56	795ENSO+QBO	
15-20 km			-2.9
		_	

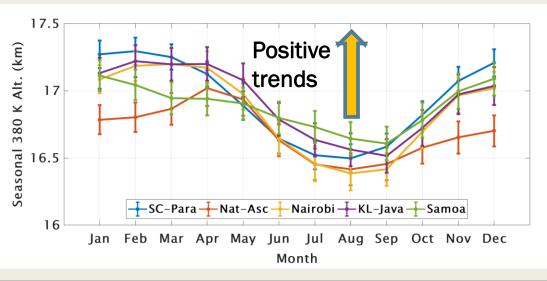
LMS Ozone Trends (%/decade; cyan significant)



- LMS ozone displays a negative trend but mostly during latter part of year
- Magnitude of LMS ozone losses (blue circles) is 5-10%/decade

Positive Trends in Tropopause Height Coincide with LMS Ozone Loss


- Mid-late year: Tropopause Height (380K altitude) increases, ~150-175 m, occur when LMS O_3 decreases ~5%/dec. LMS O_3 -TH anti-correlated (0.7-0.9)
- Connection to GW change (not shown) less clear
- Next: Examine other data, re-analyses for evidence of TH & convective trends


SIGNIFICANCE OF SHADOZ TRENDS. Context from LMS Ozone & TH Cycles (Anomaly from Means)

Monthly LMS Ozone Anomaly

Tropopause Height Anomaly

- Significant LMS O₃ losses coincide with O₃ maximum, July Sept/Oct. A decreasing maximum with little change in Jan-May O₃ minimum signifies a "flattening" of the annual cycle (due to BDC, Randel et al. 2007)
- Tropopause Height increase coincides with LMS O₃ loss. Small decrease in TH Jan.-May (TH max) means that mean TH is increasing and the annual cycle will flatten out

Summary: SHADOZ LMS Trends

- <u>Ozone Trends</u>: Only 1 of 5 SHADOZ stations exhibits "robust" annual change, ~3%/dec LMS O_3 loss at SC-Para during 1998-2019. From <u>Jun/Jul to Nov/Dec</u>, 3 stations display significant O_3 losses in <u>isolated</u> months
 - Our results do not readily "match up" with zonally averaged satellite trends. The trends of Szelag et al. (2020) with 4 merged products using SAGE II (one with SAGE III) show maximum LMS O₃ losses in M-A-M, <u>not</u> J-J-A as in sondes
 - SHADOZ O₃, TH data & model fits over 22 yrs will be available for satellite and model comparisons – *Reference* for ongoing Assessments (LOTUS, etc)?
- **Dynamical Influences on LMS Ozone Trends?**
 - LMS O₃ losses are strongly correlated with TH increases (mid-late year)
 - In both cases, LMS O₃ (maximum) and TH (minimum), the direction of change during this time flattens the annual cycle
 - More study of links among LMS O_3 TH, convective activity is needed. Look at independent data, re-analyses and output from suitable Chem-Climate models.

THANK YOU FOR ATTENTION!

- NASA SUPPORT: Upper Atmospheric Composition Observations Program (Ken Jucks, HQ) for SHADOZ support. ISS/SAGE III to AMT (R. Eckman). Additional funding from USRA/NPP to RMS, GMAO to KW
- ISS/SAGE III PARTNERS: H-J. Ray Wang, Ga Tech, PI; S. Strahan, USRA/GSFC, Co-I. Also Co-I with L. Kalnajs & T. Deshler (CU-Boulder)
- **COMMENTS:** W. Randel (NCAR); O. Cooper/A. Gaudel (NOAA/CSD)

BIBLIOGRAPHY

EARLY SAGE & SHADOZ ARTICLES

Randel & Thompson (2011) *J. Geophys. Res.* https://doi.org/10.1029/2010JD015195 Randel, W. J. et al (2007) *J. Atmos. Sci.* <u>https://doi.org/10.1175/2007JAS2409.1</u>

Thompson, A. M. et al. (2011) J. Geophys. Res. https://doi:10.1029/2009JD013429

Thompson, A. M. et al. (2012) J. Geophys. Res. https://doi: 10.1029/2010JD016911

RECENT SATELLITE PRODUCT TRENDS

Ball, W. T. et al. (2018) *Atmos. Chem. Phys.* https://doi.org/10.5194/acp-18-1379-2018
Ball, W. T. et al. (2020) *Atmos. Chem. Phys.* https://doi.org/10.5194/acp-20-9737-2020
Szelag, M. et al. (2020) *Atmos. Chem. Phys.* https://doi.org/10.5194/acp-20-7035-2020
Wargan, K. et al. (2018) *Geophys. Res. Lett.* https://doi.org/10.1029/2018GL077406

SHADOZ V06 OZONE ARTICLES

Stauffer, R. M. et al. (2020) *Geophys. Res. Lett.* e2019GL086791. https://doi.org/10.1029/2019GL086791 Thompson, A. M., et al. (2017) *J. Geophys. Res.* https://doi.org/10.1002/2017JD027406 Witte, J. C. et al. (2017) *J. Geophys. Res.* https://doi:10.1002/2016JD026403 Witte, J. C. et al. (2018) *J. Geophys. Res.* https://doi:10.1002/2017JD027791