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Objective 1: Obtain direct solar/lunar measurements of NO, and
NO, from Table Mountain Facility in support of SAGE 111/1SS
validation.

Objective 2: Analyze comparisons with coincident SAGE 111/1SS
measurements and work with the algorithm and science teams
to interpret the comparisons and incorporate improvements
into retrieval algorithms.

Objective 3: Utilize in-situ measurements of NO; and N,Oc and
chemical modeling to separate stratospheric and tropospheric
partial columns.

Thomas J. Pongetti, JPL Data Acquisition/Analysis
King-Fai Li, UCR 1-D Modeling
Yuk L. Yung, Caltech 1-D Modeling

Steven S. Brown, NOAA In-situ measurements



Key Processes in Stratospheric NO,-NO, Photochemistry
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* Two pathways to HNO; formation:
e Daytime (through OH + NO, + M reaction)
* Nighttime (through N,O: + sulfate aerosol reaction, NO3;-mediated
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Ground-Based Measurements

Direct Solar and Lunar Spectroscopy
at JPL Table Mountain Facility
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X Jet Propuision ooy UV-Visible Grating Spectrograph (MUGS)
at JPL/Table Mountain Facility
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Schematic of the instrument light path. (a) Light is collected by the primary of the
heliostat (tracker) then through an off-axis telescope which also serves as a fine guider
for the pointing system. (b) The light is directed through a condensing lens, shutter,
order-sorting filter, and then into the spectrometer where it is dispersed and recorded
by a CCD camera.




Correcting for Trace Gas Absorption in the
NO, Reference Spectrum
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Fig. 9.1. Sketch of direct light observation geometries. In first approximation, the
light path through a trace gas layer varies with 1/ cos ¥ (¢ = zenith angle of celestial
body jobserved) From Stutz and Platt, Differential Optical Absorption Spectroscopy (2008)

A reference spectrum s acquired near zenith to obtain a background solar spectrum
The reference spectrum contains absorption(s) from the molecule(s) of interest.

A Langley Plot is constructed to determine the slant column density in the reference
spectrum.
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Modeled slant column, AMF; x VC,(AMF) (10*° cm™)
e X-axisis transformed from AMF, to AMF, x VC,(AMF) where the function VC_(AMF) is
derived from the model’s a priori time-dependence of NO,

* This transformation resultsin the correct value of the reference column abundance as
determined from the y-intercept




NO, Column Model-Measurement Comparison
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NO, reference column using modified Langley method
Overall agreement is excellent; First continuous night/dayrecord
MUGS cannot measure at the exact time of sunrise or sunset due to obstructions

October 27 daytime data show influence of a polluted air mass



24 Hour Back-Trajectories Reaching TMF at 1500
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MUGS Comparisons with SAGE-I111/ISS



SAGE-III/TMF Coincidences
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Exact coincidences between SAGE-IIland TMF are exceedingly rare
We consider coincidences within a global zonal belt + 5° latitude from TMF (34.4 °N)
SAGE occultations at other longitudes are converted to TMF local time



Typical SAGE-Ill Sunrise NO, Profiles (zonal average)
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Typical SAGE-III Lunar NO, Profiles (zonal average)
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Typical SAGE-III Lunar NO; Profiles (zonal average)
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Column NO, {molecule/ch)

Example SAGE-MUGS NO, Comparison: January
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SAGE-MUGS NO, Comparison: year-over-year
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SAGE-MUGS NO, Correlation (Solar)
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TMF-MUGS Column NO, (moleculefch)

Scatter plot between monthly averages of SAGE-IIl columns (z>15 km) and

MUGS total columns (+ 2 hours from sunset or sunrise, 20t percentile)
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SAGE-IIl Column NO, (moleculefcmz)

SAGE-MUGS NO, Correlation (Lunar)

Note: Lunar NO, is a research product— not formally released
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20x10" 7 SAGE-MUGS NO; Comparison: February
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SAGE-MUGS NO; Comparison: year-over-year
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SAGE-MUGS NO; Correlation (Lunar)
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Take-Home Points
* Ground-based TMF direct sun/moon total column
measurements provide very good comparisons with SAGE-
111/ISS stratospheric partial columns because:
o High altitude (2.3 km) and remote location of TMF
minimize PBL pollution contributions to the total column
o Sorting methods are available to identify measurements
(NO,, NO;) that contain significant tropospheric
contributions.
o 1-D model provides the nominal tropospheric partial
column contributions
* Preliminary comparisons between MUGS and SAGE show good
correlations for NO,. NO, agrees well in winter/spring, less
well in summer/fall
* Future work will focus on extending the ground-based
climatologies, using the 1-D model for diurnal corrections,
working with algorithm team on lunar NO, productincluding
Cross sections.
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