Using Measurements from the Disturbance Monitoring Package in SAGE III/ISS Data Processing

Marsha LaRosee1, Charles Hill2, Kevin Leavor1, Amy Rowell2, David Huber3, Andrew Peterson2, Robert Damadeo2, Robbie Manion1, Marilee Roell2, David Flittner2

1Science Systems and Applications Inc, 2NASA, 3NOAA
SAGE III/ISS – Latest in the SAGE Series of Occultation Instruments

SAGE III/ISS Retrieves Profiles of:
- O_3, NO_2, Aerosols, H_2O Vapor
- Other trace gases

Occultation Measurement Technique is performed by:
- Scanning Radiant Target (Sun/Moon) through the atmosphere
- Transmission is then converted to vertical profiles
- Requires precise pointing knowledge of the target
- Prior Missions operated in benign Mechanical Vibrational Environment

Tracking & Scanning Radiant Target accomplished by:
- Azimuth rotor assembly
- Elevation Scan Mirror
- [ISS] Disturbance Monitoring Package

[ISS] International Space Station experiences attitude fluctuations caused by:
- Maintaining TEA (torque equilibrium attitude)
- Reboots, Dockings, Maneuvers
- Pointing precision requirement < 30 arcsec
- 10% Events Impacted by disturbances
SAGE III Payload is comprised of 5 subsystems:

- Sensor Assembly [SA]
- Hexapod Mechanical Assembly [HMA]
- 2 Contamination Monitoring Packages [CMP]
- Disturbance Monitoring Package [DMP]
- Interface Adapter Module [IAM]

Attitude Fluctuations are measured by a Disturbance Monitoring Package [DMP]:

- Miniature Inertial Measurement Unit [MIMU]
- 3 Ring Laser Gyroscopes
 Sensitive to rotations as small as
 $1 \mu \text{radian} @ 200 \text{ Hz [0.001 arcsec / sec]}$
- $1 \mu \text{radian}$ in elevation $\rightarrow 0.7 \text{m} - 2.5 \text{ m}$ in tangent height registration from a 400km orbital altitude
- Significant as only 30m of the 100m altitude error budget are allotted to spacecraft attitude
ACS and DMP Coordinate Systems:
- [ACS] Analysis Coordinate System fixed to ISS
 - ACS Z-axis → Nadir [normal TEA attitudes]
 - ACS X-axis → RAM [normal TEA attitudes]
- DMP is oriented to ACS such that axes form [normal TEA attitudes]:
 ~90 rotation about the \(Y_{ACS}, Y_{DMP}\) shared axis
 Other ACS orientations are possible but less common

Transform DMP Measurements → [Elevation, Azimuth Roll]:
- Remove Orbital Motion
- Filter Dither using Butterworth Filter
- Convert Gyro Positions to Rates
- Rotate through Quaternions:
 -Hexapod [HMA]
 -Static [alignment error due to
 -Wedge
 -DMP → SA Coordinate Transformation

DMP Elevation Correction [DMP Offset]:
- Map into Boresight Frame using
 Azimuth, Elevation Angles
- Mark Exceedances
- Down Sample to 64 Hz
Pointing Registration Correction:

- Assigns solar positions by scaling angular displacements from Nadir using a calculated Scan Rate as,

 \[\text{Scan Rate} = \text{top edge-bottom edge/time difference} \]

- DMP correction for the same interpolated time is added

 Fig 6 Left: Time series for Scan Rate Displacement, & DMP Offset

 Fig 6 Right: Limb Darkening Curves

Lower Atmospheric Scan Rate Correction:

- Sun becomes occluded requiring Exo-Atmospheric scan rate extrapolation

 Fig 7 Top: diverging red & blue boxes

- DMP Offset added to Exo-Atmospheric, corrected scans then result in an improved lower atmosphere extrapolation

 Fig 7 Bottom: aligned red & blue boxes
Pointing Registration Correction

- Assigns solar positions by scaling angular displacements from Nadir using a calculated Scan Rate
- DMP correction for the same interpolated time is added

Animations

- Left Plot:
 - SDO HMIIC image
 - OverPlotted w angular positions w & wout DMP correction
- Right Plot:
 - Elevation Offset added to angular displacement

Note: Depending on Disturbance angular rate and direction compared to those of the Mirror, the DMP Corrected Solar Position will lead or lag the Mirror Position

Without DMP Correction (Black)
With DMP Correction (Blue)
Pointing Registration Correction

To illustrate the effect of the DMP Correction, an animation iterates through events showing Level 1 Intensity and Transmission Data:

- 50 Events: Largest # Disturbances
- BEFORE –and- AFTER Correction
- Left Plot: Solar Intensity vs Sun Position
- Right Plot: Transmission vs Altitude

Without DMP Correction (Black)
With DMP Correction (Blue)

Note: Events w Sunspots
Level 1 Transmission Improvements:

Fig 8 Unbinned Transmission for wavelengths (385, 601, & 1020 nm)

- [Top Row] Exo Atmospheric DMP corrects disturbances reliably
 - Order of Magnitude Decrease in noise
 - Similar Results observed for Entire Exo-Atmospheric Dataset

- [Bottom Row] Lower Atmosphere Disturbance present, smaller for this event, correction still performs reliably
 - Changes in overall pointing registration where large transmission gradients exist

Level 2 Retrieval Improvements:

Fig 9 [Left] Retrievals & Uncertainties for O3, 1 μ Aerosol, & H2O Vapor
Fig 9 [Right] Percent Differences for each Retrieval

- Reduction in Retrieval Uncertainties
- Reduction in Retrieval Noise itself
 - Note H2O Vapor reduction which is specifically sensitive to Transmission noise

- Beginning to Investigate the effects of the DMP Correction on the SAGE III/ISS Dataset as a whole
To Summarize:

- Sage operates on the ISS
- ISS experiences Attitude Fluctuations
- DMP Corrects for Pointing Mis-Registrations in 10% Events
- Level 1 & 2 Data Products result in lower uncertainties

Future Work:

- Analyzing Entire Dataset using DMP Correction
- Investigate Other Potential Improvements
 - Fine tune Filter Cutoff Frequency
 - Incorporate Azimuth & Roll Offsets
 - Incorporate DMP Flag for high level disturbances
 - Improve Understanding of:
 - Coordinate Transformation
 - ACS → DMP → SA
 - Mechanical Transfer Function