

SAGEISS

Stratospheric Aerosol and Gas Experiment

An Earth Science Mission on the International Space Station

SAGE-III/ISS Science Team Meeting

Travis N. Knepp Mahesh Kovilakam, Stephan J. Miller, Larry Thomason Quantifying Uncertainty in PSD Parameters Inferred from SAGE III/ISS Extinction Spectra

- SAGE data have been used to estimate particle size distribution (PSD) parameters
 - Mode radius
 - Distribution width (σ)

- SAGE data have been used to estimate particle size distribution (PSD) parameters
 - Mode radius
 - Distribution width (σ)

- Measurement error is often neglected
 - Wrana et al. 2021 included error

- SAGE data have been used to estimate particle size distribution (PSD) parameters
 - Mode radius
 - Distribution width (σ)

- Measurement error is often neglected
 - Wrana et al. 2021 included error
- Bimodal distributions have not been evaluated

- Use Mie theory to identify PSD parameters from SAGE III/ISS data
 - Account for measurement error in PSD estimates
 - Provide confidence level for PSD estimates
 - Expand to include other microphysical properties (e.g., SAD and VD)
 - Extend analysis to include bimodal distributions

- Invoke standard Mie theory assumptions
 - all particles spherical
 - all distributions are lognormally distributed
 - mode radius range: 50 500 nm (1 nm resolution)
 - sigma range: 1.1 2.0 (0.001 resolution)
 - particles composed of 75% (wt) sulfuric acid, 25% water
 - Palmer and Williams (1975) refractive indices
 - above assumptions used in lookup table (LUT) creation

- Use Mie theory to create lookup tables of extinction coefficients: k(r, λ, σ)
- Use same ratios as Wrana et al. 2021 (450:755 and 1550:755)

All potential solutions!

Which is right/best?

Extinction Ratio Plot 1.1 1.0 $k_{450}:k_{755}$ 0.9 0.8 0.25 0.30 0.35

 $k_{1550}: k_{755}$

Use distance from central point as weight

Calculate weighted statistics (e.g., median)

10/12/2022

Use distance from central point as weight

Calculate weighted statistics (e.g., median)

How well does that work?

- How accurately can we reproduce "known" values?
 - How does this change as a function of measurement uncertainty?
- Evaluate under 2 scenarios:
 - We get the composition correct
 - We get the composition wrong

Imaginary atmosphere 75% H_2SO_4

Imaginary atmosphere 75% H_2SO_4

Pull out single extinction ratio of known r, λ , σ

Imaginary atmosphere 75% H₂SO₄ Pull out single extinction ratio of known r, λ , σ

Find matches in 75% H_2SO_4LUT

Inferred / Target

Error = 20%

Error = 5%

PSD estimates are smaller than target values

Imaginary atmosphere NOT 75% H_2SO_4

Imaginary atmosphere NOT 75% H₂SO₄

Pull out single extinction ratio of known r, λ , σ

Imaginary atmosphere NOT 75% H₂SO₄ Pull out single extinction ratio of known r, λ , σ

Find matches in 75% H_2SO_4LUT

Let's reference this to the 75% solutions we just looked at

75%

Getting weight percent H₂SO₄ wrong has minimal impact

75% H₂SO₄ / Smoke

90% BrC, 10% BC

 10^{-1}

, []^{*}******^{*}*[†]†<u>†</u>†j

0.52

10⁰

75% H₂SO₄ / Smoke

Sensitivity Study Continued Wrong Composition: With smoke

Smoke significantly influenced estimates

- SAGE III/ISS extinction data will be used to estimate PSD parameters
 - we expanded scope of proposed work to include microphysical properties (SAD, VD)
- When composition is known:
 - PSD estimates are generally too small
- When composition is unknown:
 - Getting H₂SO₄ weight percent wrong has minimal impact
 - Ignoring smoke makes radius, SAD, and VD estimates larger
 - Ignoring smoke makes distribution width smaller
- Bimodal code is nearly complete

Sensitivity Study Method

- Build LUTs of known compositions
 - 65%, 70%, 75%, 80% H₂SO₄
 - Black carbon (BC) and brown carbon (BrC) smoke
- Assume composition is correct
 - pull extinction ratios from 75% $\rm H_2SO_4$ and find solutions in the 75% $\rm H_2SO_4$ LUT
 - i.e., source and LUT match
- Look for solutions in 75% H₂SO₄ LUT
 - pull extinction ratios from X% H₂SO₄ (or smoke) and find solutions in the 75% H₂SO₄ LUT
 - i.e., source and LUT do not match

Reading the Tea Leaves of Uncertainty

Reading the Tea Leaves of Uncertainty

10/12/2022

Reading the Tea Leaves of Uncertainty

Worst-case scenario

10/12/2022