

Developing a continuous ozone record through the SAGE and Aura satellite missions with NASA reanalysis products

Pamela Wales^{1,2}, K. Emma Knowland^{1,2}, Kris Wargan^{2,3}, Brad Weir^{1,2}, Steven Pawson²

(1) Morgan State University, GESTAR-II, Baltimore, MD; (2) NASA Goddard Space Flight Center, GMAO, Greenbelt, MD; (3) Science Systems and Applications Inc., Lanham, MD

Background and Research Objectives

- Propose connecting the gap between SAGE II and SAGE III/ISS instruments using NASA reanalysis O₃ products
 - 17-year gap between SAGE II and SAGE III/ISS instruments
 - Account for changes in the reanalysis observing system
- Data assimilation produces global, vertically resolved fields by combining observations from multiple sensors
 - Strong theoretical foundation
 - Less sensitive to sampling biases and orbital drifts than merged observation datasets

MERRA-2 Background

- High resolution global dataset
 - 50 km horizontal resolution (0.5° latitude × 0.625° longitude)
 - 72 vertical levels up to 0.01 hPa
- Product of the GEOS data assimilation system
 - Assimilates aerosol optical depth, ozone, and meteorological observations
 - Simplified ozone production and loss rates
 - Ozone observing system:
 - 1980 2004: SBUV instruments
 - 2004 present: Aura MLS profiles and OMI total column

MERRA-2: Modern-Era Retrospective Analysis for Research and Applications, version 2 (Gelaro et al., 2017)

Changes in MERRA-2 Observing System

- Transition to Aura O₃ observations in 2004
 - SBUV instruments 1980 2004
 - Aura MLS and OMI 2004 present
 - Introduced a discontinuity in record with respect to SAGE II record (Wargan et al., 2017)
- Account for changes in the MERRA-2 observing system
 - Transition to Aura O_3 observations in 2004 using a chemical model
 - Investigate impact of meteorological updates in 1995 and 1998 using SAGE II

MERRA-2: Modern-Era Retrospective Analysis for Research and Applications, version 2 (Gelaro et al., 2017)

MERRA-2 and SAGE III/ISS

- MERRA-2 independently validated using SAGE solar occultation measurements
 - Well correlated, slightly lower than SAGE III/ISS solar occultation measurements
 - Stable MERRA-2 product for SAGE III/ISS
- Ozone fields above 5 hPa:
 - Reduced sensitivity of assimilation to observations (e.g., Wargan et al., 2023)

10 hPa20 hPaCorrelation30 hPacoefficients50 hPaper level in70 hPaeach inset100 hPa

MERRA-2 and SAGE III/ISS

- Stable MERRA-2 product during SAGE III/ISS record (2017 – 2022 shown)
 - Limited coincident observations for lunar occultation validation
- Ozone fields above 5 hPa:
 - Reduced sensitivity of assimilation to observations (e.g., Wargan et al., 2023)
- Preliminary comparison to SAGE III/ISS lunar occultation measurements
 - Low bias with respect to MERRA-2 around 10 hPa
 - Larger standard deviation about the mean bias

utics and nistration

Aura era discontinuities

- Updates to O₃ observation system introduce discontinuities in the record
 - 2004: Inclusion of Aura MLS and OMI
 - 2015: Updates in MLS version
 - 2016: Turn off MLS assimilation in lower pressure levels
- MERRA-2 GMI as a transfer function across Aura-era discontinuities (Wargen et al., 2018)
 - MERRA-2 meteorology
 - O₃ calculated within Global Modeling Initiative (GMI) chemical mechanism (no ozone data assimilation)

Aura era discontinuities

- Use M2GMI as a transfer function across each O₃ observing system update
 - Find the difference between MERRA-2 and M2-GMI before and after updates
 - Corrected MERRA-2 fields are stable with respect to M2GMI
 - Able to reproduce and extend findings of Wargan et al. (2018) from 2017 to 2022

G

Extension to SAGE II (1980 - 2005)

- From MERRA-2 validation:
 - Agreement with SAGE II improves in 2005 following inclusion of Aura observations (Wargan et al., 2017)

Extension to SAGE II (1980 - 2005)

- From MERRA-2 validation:
 - Agreement with SAGE II improves in 2005 following inclusion of Aura observations (Wargan et al., 2017)
- Extend corrected MERRA-2 record:
 - 2015/2016 update influences O_3 in the lower stratosphere
 - From 2004 bias corrections, MERRA-2 is more stable with respect to SAGE II

(6

SAGE II era discontinuities

- Evaluate impact of temperature discontinuities on MERRA-2 ozone fields
 - Potential to impact M2-GMI O₃ via meteorology
 - Use SAGE II record as a transfer function

SAGE II era discontinuities

- Evaluate impact of temperature discontinuities on MERRA-2 ozone fields
 - Potential to impact M2-GMI O₃ via meteorology
 - Use SAGE II record as a transfer function
- Prior to 1995 meteorological update:
 - Interferences from 1991 Pinatubo eruption
 - Additional loss of SAGE II data in 1993/1994
- Following 1998 meteorological update:
 - SAGE II outage in 2000, returns at half sampling (2001 – 2005)

SAGE II era discontinuities

Future Directions

- Stable record with respect to SAGE II between 10 to 100 hPa
 - Ambiguous detection of discontinuities associated with meteorological updates
 - Test sensitivity of trends to bias correction across 1998 update
- Continue to evaluate SAGE III/ISS lunar occultation measurements
 - Explore temporal and seasonal patterns
 - Connect to SAGE III/M3M mission (2002 2005)

NASA

Backup

SAGE III/ISS Water Vapor assimilation (Knowland et al., *in prep*)

