Balloon-borne, ground-based and satellite observations of the Hunga Tonga Hunga Ha'apai volcanic plume during the BraVo campaigns

Amit Kumar Pandit¹, Jean-Paul Vernier^{1,2}, Hazel Vernier³, Gwenael Berthet³, Eduardo Landulfo⁴, Fabio Lopes⁴, Giovanni Souza⁴, Demilson Quintão⁵, Bruno Biazon⁵, Rohit Meena⁶, and Neeraj Rastogi⁶

¹National Institute of Aerospace, 100 Exploration Way, Hampton, VA 23666, USA.

²NASA Langley research Center, Hampton, VA 23666, USA.

³Laboratoire de Physique et Chimie de l'Environnement et de l'Espace, (LPC2E), CNRS, Université d'Orléans, France.

⁴Instituto de Pesquisas Energéticas e Nucleares Brazil, São Paulo, Brazil.

⁵Centro de Meteorologia de Bauru - FC/Unesp, Bauru, Brazil.

⁶Physical Research Laboratory, Ahmedabad, India.

SAGE III/ISS Science Team Meeting, 12-13 September 2023, Georgia Tech., Atlanta, USA.

Outline

- Aerosol-cloud discrimination in SAGE III/ISS extinction data: A 3- λ approach
- SAGE III/ISS and CALIPSO observations of the HTHH aerosols
- Balloon measurements of the HTHH plume during the BraVo campaigns
- Co-located SAGE III/ISS and balloon measurements during and after one year of the BraVo campaigns
- Sedimentation of large particles from the HTHH plume & comparison with size retrieval
- Chemical composition of the HTHH plume
- Summary & Future directions

Aerosol-Cloud Discrimination in SAGE III/ISS Aerosol Extinction Data: The Extinction Color Ratio (ECR) Method

MOTIVATION: The **3**- λ method introduced by Kent et al. (1997) for SAGE III Meteor 3-M extinction data at 520, 1020 & 1550 nm could not be thoroughly tested on the SAGE data because:

Usefulness of 3- λ vs 2- λ method for Climate studies

2- λ method : Thomason and Vernier (2013) - TV 3- λ method : Bhatta et al., (2023) - ECR

Bhatta et al. (2023), Applied Optics

2-λ method	3-λ method
Uses one extinction ratio, R1 and one extinction coefficient at 1020nm	Uses two extinction ratios: R1 & R2.
Requires estimation of centroid & k ₀	Not required
Centroid location shifts during different sampling periods: Dynamic thresholds	Fixed thresholds
Can be used for long-term climate studies using both SAGE II & SAGE III data.	Limited to short-term climate studies after 2017.

	Period	Centroid (R)	Corresponding
Altitude			Extinction (k_0)
	2017/06/07-	3.11	-3.72
18 km	2021/02/28		
	2018/07/01-	4.37	-3.88
	2018/12/31		
	2019/01/01-	3.38	-4.05
	2019/05/31		
	2019/07/01-	2.99	-3.22
	2019/12/31		
17 km	2017/06/07-	2.88	-3.96
	2021/02/28		
	2018/07/01-	3.98	-3.90
	2018/12/31		
	2019/01/01-	2.87	-4.03
	2019/05/31		
	2019/07/01-	3.89	-3.66
	2019/12/31		

SAGE III/ISS Observations of the HTHH aerosols

CALIPSO Observations of the HTHH Plume

Scattering ratio derived using method given by Vernier et al. (2009) Downwelling of the HTHH plume over the Southern Hemisphere

The Brazil Volcano: BraVo Project

Balloon-borne Instruments used during the BraVo Campaigns

iMet-1 Radiosonde

- T, P, RH, u, & v
- GPS location

Compact Optical Backscatter AerosoL Detector (COBALD)

- A two-wavelength backscatter sonde
- Backscatter ratio (BSR) at 455 nm (blue) & 940 nm (IR) wavelengths.
- Color Ratio = BSR₉₄₀/BSR₄₅₅

En-Sci ECC Ozone sonde (NOAA GML)

- Potassium iodide based ECC.
- Ozone mixing ratio profile.

- Based on chilled mirror principle
- Frost-point temperature
- Water vapor mixing ratio & RH_{ice}

iMet-4 Radiosonde

- Laser diode based optical particle counter
- Particle counts at 30 size channels every 2 seconds
- Size range: 0.3 -10 μm (diameter)
- Flow: 2.83 LPM (0.1 CFM)

Particle Plus 9301 OEM Series Particle Counter (NPOPC)

Brechtel Filter Sampler

- Eight filters or TEM grids with software actuated sampling.
- Samples collected on filters used for ion-chromatography

Qualitative Comparison between POPC and COBALD during the BraVo 2022 campaign

Co-located SAGE III/ISS and Balloon measurements of Aerosols during BraVo

Size distribution Altitude-dependence

2 × 10⁰

Aerosol Extinction from Co-located SAGE III/ISS and Balloon measurements for HTHH plume

- POPC and SAGE III see qualitatively the same atmospheric layers (HTHH, UT aerosol layer)
- POPC derived extinction using refractive Index of sulfate aerosol (Knepp et al., 2022)
- SAGE III/ISS extinction larger by a factor 2 [Mie coefficient calculated using size distribution rather than fit]

Sedimentation of Large particles from the HTHH plume

- HTHH aerosol size information derived from POPC during the first 19 months after the eruption from Brazil
- Large particles [d>0.7-0.8 μm] settling due to sedimentation
- Could the larger particle be made of something else than sulfate ?

Sample Extraction and Ion Chromatography Analysis

Filters were unloaded in a Laminar Air Flow & preserved in dry ice until analysis using Pre-sterilized instruments

Aerosol extraction & Calibration of the IC Unit using ultra-pure Water in preparation for analysis.

Reagent-free IC System (Detection limit-0.01 µg/L)

Summary and Future Directions

Summary:

- Extinction Color Ratio (ECR) or 3-λ method was tested for the SAGE III/ISS observations under perturbed stratospheric conditions.
- 3-λ method was used for separating aerosols from aerosol-cloud mixture for the HTHH volcanic plume.
- Both SAGE III/ISS and CALIOP/CALIPSO observations show downward transport of the HTHH plume over the Southern hemisphere.
- Balloon-borne measurements of the HTHH plume were conducted during the Brazil Volcano (BraVo) field campaign after four months of the HTHH eruption.
- BraVo campaign provided physical and chemical characteristics of the HTHH plume.
- Both aerosols and water vapor measurements inside the HTHH plume were obtained and validated with co-located SAGE III/ISS observations.
- Larger particles in the HTHH plume were seen to sediment with time
- Controlled balloon flight allowed to sample the HTHH plume for ~40 minutes.
- Ion chromatography of the collected HTHH sample confirmed presence of sea salts confirming the submarine source of the HTHH plume.

Future Directions:

- Plan to continue balloon measurements of the HTHH plume from Brazil with co-located SAGE III/ISS measurements.
- Impact of downwelling HTHH plume on cirrus cloud properties.

Acknowledgements

- SAGE III/ISS Science Team for funding support.
- Brazilian scientists and engineers for their support during the BraVo campaigns.
- LPC2E, National Institute of Aerospace & Physical Research Laboratory.

Thank you!

Fig. 2. (a) Variation of mean extinction coefficient as a function of different wavelength channels for discriminated possible cloudlike events (PCLE) and aerosols found from June 2017 to February 2020 based on the proposed ECR method D for altitude levels from 15 km to 18 km with an interval of 1 km. (b) Relation between both ECR (R₁ and R₂) with the aerosol Angstrom exponent. The red dotted lines represent the separation between the possible cloud-like events (PCLE) and aerosols.