Impacts of the Asian summer monsoon on UTLS composition: Observations and Modeling

Atmospheric Chemistry Observations & Modeling Lab
NSF National Center for Atmospheric Research
wsmith@ucar.edu

SAGE III Science Team Meeting March 7, 2025

Thanks to support from:

Laura Pan, Rei Ueyama, Simone Tilmes, the ACCLIP science team, the NCAR multi-scale modeling team, and many more!

Recent research has focused on what *rises* through the ASM, rather than what *falls*

Asian summer monsoon (ASM) deep convection exports pollution to the global atmosphere

MUSICA CO rendering by Matt Rehme, NSF NCAR/CISL

Pollutants lofted by ASM convection have a pathway to enter the stratosphere

Vogel et al. (2019)

Honomichl and Pan (2020)

Asian Summer Monsoon Chemical and Climate Impact Project (ACCLIP)

Principal Investigators: Laura Pan (NCAR), Paul Newman (NASA)
Lead Co-Investigators: Elliot Atlas (Univ. Miami), William Randel (NCAR),

Troy Thornberry (NOAA), Brian Toon (CU)

Primary Goal: To investigate the impacts of Asian gas and aerosol emissions on global chemistry and climate via the linkage of Asian Summer Monsoon (ASM) convection and associated large-scale dynamics

Scientific Objectives: Obtain a comprehensive suite of dynamical, chemical and microphysical measurements in the region of ASM anticyclone to address:

- 1) the **transport pathways** (vertical range, intensity, and time-scale) of the ASM uplifted air from inside of the anticyclone to the global upper troposphere and lower stratosphere (UTLS)
- 2) the **chemical content** of air processed in the ASM for UTLS ozone chemistry, and short-lived climate forcers
- 3) the information on aerosol size, mass and chemical composition for determining the radiative impact
- 4) the water vapor distribution associated with the monsoon dynamical structure

ACCLIP team members at Osan Air Base, Republic of Korea, July – September 2022

Asian Summer Monsoon Chemical and Climate Impact Project (ACCLIP)

Troy Thornberry (NOAA), Brian Toon (CU)

NSF/NCAR Gulfstream V (GV)

Duration: ~ 8 hr flight 500 ft (0.2 km) and FL 470 (14.7 km) (~51 kft ,15.4 km GPS altitude during ACCLIP)

NASA WB-57

Duration: ~ 6 hr FL 430 (13 km) and FL 620 (19 km)

Ground Based Soundings

Sensors:

Ozonesondes, CFH, Particle soundings, Ground-based lidar, Whole air samples

Participated by:

US: NSF/CU; **Korea:** Multiple universities & NIER **Japan:** Universities and NIES; **China:** CAS/IAP

Taiwan & UK: Academia Sinica & University of East Anglia

Germany: AWI

Asian Summer Monsoon Chemical and Climate Impact Project (ACCLIP)

ACCLIP sampled unprecedented pollution mixing ratios in the UTLS

TPH

250 300

350

Where and when were ASM convective contributions to ACCLIP airborne sampling?

ACCLIP sampled convective outflow from two ASM sub-systems

(Monsoon Trough)

Smith et al. (2025, in review at JGR-Atm)

Convective outflow from along the EASF was generally more polluted than South Asia outflow

East Asia, 218.3 pptv 6 sampling (%) South Asia, 119.6 pptv airborne Fraction of 100 200 300 400 500 600 CH_2Cl_2 (pptv)

GV CO data provided by T. Campos, WB-57 CO data provided by S. Viciani and the COLD2 instrument team

Dichloromethane observations on both aircraft courtesy of E. Atlas and the WAS team

The ASM lofts short-lived chlorine to the stratosphere, in excess of current estimates

Observations of chlorinated species courtesy of the WAS team and the TOGA-ToF team

Figures courtesy of Pan et al. (2024)

In-field model forecasts did not represent the largest pollutant amounts observed

GV CO data provided by T. Campos, WB-57 CO data provided by S. Viciani and the COLD2 instrument team

From Smith et al. (2024)

Transport by deep convection is essential for representing these pollutant concentrations

GV CO data provided by T. Campos, WB-57 CO data provided by S. Viciani and the COLD2 instrument team

Pink shows CO > 200 ppbv along flight track

We evaluate UTLS aerosol concentrations in CESM2 using ACCLIP airborne observations

Here we evaluate the impact of aerosol model complexity, comparing simulations using a simple modal aerosol model (MAM4) with the more complex CARMA aerosol model

Black carbon aerosol is quantifiably improved with the CARMA aerosol model!

Sulfate aerosol shows a high bias in both simulations

Sure enough, there is also a high bias in SO₂, a sulfate precursor gas

Emissions databases do not agree on the extent of recent SO₂ reductions in China

Emissions reductions improve both SO_2 and sulfate aerosol representation

Model convection over the East Asian monsoon is not deep enough

Model convection over the East Asian monsoon is not deep enough

Enhanced grid capabilities are also expected to yield improvements in convective transport representation

MUSICA version 0
Spectral element dynamical core
Hydrostatic

MUSICA version 1
MPAS dynamical core
Non-hydrostatic

Regional refinement increases transport to the UTLS

Take-home messages

- The Asian Summer Monsoon is important for affecting UTLS composition, a mechanism which may have global impacts
- The specific importance of the East Asian Summer Monsoon has been discovered by recent airborne measurements (ACCLIP 2022)
 - Air masses associated with this sub-system were generally more polluted than those transported or measured directly over South Asia
- In-field forecast models do not represent the largest pollutant levels observed in the UT during ACCLIP
- The model representation of sulfate aerosol is improved by using a Chinese emissions inventory for SO_2 , and the remaining bias may require improvements to the representation of deep convection

Science Outlook

- The convective transport diagnostic is available for use by the research community, and a manuscript summary is in review
- Additional airborne measurements were taken over the central north Pacific during PHILEAS (2023) to study export of ASM air, research should link campaigns for a comprehensive picture
- Additional ACCLIP campaign science is ongoing, including studies on black carbon wet removal, the ASM sulfur budget, and new particle formation
- Our science team welcomes new research ideas using new tools and techniques. Satellite observations are particularly useful given the multi-scale nature of this transport problem

Thank you!

wsmith@ucar.edu

ACCLIP Airborne Measurements

Measurement	WB	GV
State Parameters		
Position, Pressure, Temperature, Winds, Humidity	Aircraft, MMS	Aircraft, VCSEL
Temperature profile (above/below aircraft)		MTP
Trace Gases		
СО	COMA, COLD2, ACOS	Aerodyne, Picarro
CO ₂	ACOS	Picarro
CH₄		Picarro
N_2O	COMA	Aerodyne
O_3	UAS O3	FAST_O3
NO, NO ₂	NO-LIF	NO_NOy
SO ₂	SO2-LIF	GTCIMS
HCI, HO ₂ NO ₂ , HNO ₃ HCOOH, CH ₃ COOH		GTCIMS
¯ CH ₂ O	ISAF	TOGA
COS	ACOS	AWAS
H_2O	DLH, CHiWIS, ACOS	VCSEL
H ₂ O Isotopes	ChiWIS	
VOCs (many)	WAS	TOGA, AWAS
Aerosols		
	NMASS, CAPS, POPS,	
Particle size/mass distributions	UHSAS	NMASS, UHSAS
Chemical composition/size	PALMS	ERICA
cloud particle size/imaging	2D-S	2DS
cloud droplet size	FCDP	CDP
Cloud/aerosol distributions above/below aircraft	ROSCOE	
Radiation		
Radiative flux/Photolysis frequencies	BBR	HARP

Sulfate wet deposition is low in the model compared to a ground-based network

Three distinct chemical signatures were sampled from three MCSs over northeast China!

CO observations courtesy of: T. Campos (GV), S. Viciani and the COLD2 team (WB-57) Ethanol observations courtesy of: E. Apel, R. Hornbrook, and the TOGA-ToF team

Smith et al. (2025, in review at JGR-Atm)