SAGE II (Stratospheric Aerosol and Gas Experiment II) was launched aboard the Earth Radiation Budget Satellite (ERBS) in October 1984. During each sunrise and sunset encountered by the orbiting spacecraft, the instrument used the solar occultation technique to measure stratospheric aerosols, ozone, nitrogen dioxide, and water vapor.

SAGE II continued the SAGE measurements of stratospheric ozone from 1984-2005. This long-term, stable data set has proven invaluable in determining trends in ozone.

Data from SAGE II, in conjunction with data from sister instruments SAM II and SAGE I, can be used to estimate long-term constituent trends and identify responses to episodic events such as volcanic eruptions.

The data SAGE II collected was integral to confirming human-driven changes to ozone, and thus contributed to the 1987 Montreal Protocol that banned certain harmful chemicals. SAGE II also saw that ozone stopped decreasing in response to this action.

Major results from SAGE II include illustrations of the stratospheric impact of the 1991 Mount Pinatubo eruption, identification of a negative global trend in lower stratospheric ozone during the 1980s, and quantitative verification of the positive water vapor feedback in current climate models.

The platform for SAGE II is the Earth Radiation Budget Satellite (ERBS).
Nominal orbit parameters for ERBS are:

  • Launch Date: October 5, 1984
  • Planned Duration: 2 years
  • Actual Duration: powered off on August 26, 2005
  • Orbit: non-sun synchronous, circular at 650 km
  • Inclination: 57 degrees
  • Nodal Period: 96.8 minutes

The SAGE II instrument was a seven-channel Sun photometer that used a Cassegrainian-configured telescope, holographic grating and seven silicon photodiodes, some with interference filters, to define the seven spectral channel bandpasses. Solar radiation is reflected off a pitch mirror into the telescope, forming an image of the sun at the focal plane. The instrument’s instantaneous field-of-view, defined by an aperture in the focal plane, is a 0.5-by-2.5 arc-minute slit that produces a vertical resolution at the tangent point on the Earth’s horizon of about 0.5 kilometers. Radiation passing through the aperture is transferred to the spectrometer section of the instrument containing the holographic grating and seven separate detector systems. The holographic grating disperses the incoming radiation into the various spectral regions centered at the 1020, 940, 600, 525, 453, 448, and 385 nanometer wavelengths. Slits on the Rowland circle of the grating define the spectral bandpass of the seven spectral channels. The spectrometer system is inside the azimuth gimbal to allow the instrument to be pointed at the Sun without image rotation. The azimuth gimbal can be rotated over 370 degrees so that measurements can be made at any azimuth angle.

The operation of the instrument during each sunrise and sunset measurement is totally automatic. Prior to each sunrise or sunset encounter, the instrument is rotated in azimuth to its predicted solar acquisition position. When the Sun’s intensity reaches a level of one percent of maximum in the Sun sensor, the instrument adjusts its azimuth position to lock onto the radiometric center of the Sun to within +/-45 arc-seconds and then begins acquisition of the Sun by rotating its pitch mirror in a predetermined direction depending on whether it is a sunrise or a sunset. When the Sun is acquired, the pitch mirror rotates back and forth across the Sun at a rate of about 15 arc-minutes per second. The radiometric channel data are sampled at a rate of 64 samples per second per channel, digitized to 12-bit resolution, and recorded for later transmission back to Earth.

SAGE II Instrument

Spatial / Temporal Coverage

  • Spatial Coverage: 80N to 80S, 180E to 180W
  • Spatial Resolution: .5km Altitude
  • Temporal Coverage: 10/24/1984 – 8/31/2005, no data available for August-October 2000
  • Temporal Resolution: Sunrise/Sunset Events

Data Products

  • Ozone
  • Aerosol Extinction Profiles
  • Nitrogen Dioxide
  • Water Vapor
  • Derived Aerosol Properties

SAGE II stratospheric aerosol extinction coefficient for 1998-2003.

1. Brogniez, C., and J. Lenoble, Analysis Of 5 Year Aerosol Data From The Stratospheric Aerosol And Gas Experiment II, J. Geophys. Res., 96, D8, 15479-15497; 1991

2. Callis, L.B., An Examination Of Global Variations Of Sunset NO2 As Measured By SAGE II, Adv. Space Res., 14, 1, 219-222; 1993

4. Chu, W.P., E.W. Chiou, J.C. Larsen, L.W. Thomason, D. Rind, J. Buglia, S. Oltmans, M.P. McCormick, and L.R. McMaster, Algorithms And Sensitivity Analyses For SAGE II Water Vapor Retrieval, J. Geophys. Res., 98, D3, 4857-4866; March 20, 1993

4. Cunnold, D. M., H.J. Wang, L.W. Thomason, J.M. Zawodny, J.A. Logan, and I.A. Megretskaia, SAGE (version 5.96) ozone trends in the lower stratosphere, J. Geophys. Res., 105, 4445-4457, 2000

5. McCormick, M.P., SAGE II Observations Of Water Vapor Distributions In The Stratosphere And The Upper Troposphere, A Report Submitted To The SPARC Subcommittee; 1996

6. Pitts, M.C., L.R. Poole, and M.P. McCormick, SAGE II Observations Of Polar Stratospheric Clouds Near 50 N January 31-February 2, 1989, Geophys. Res. Lett., 17, 4, 405-408; March, 1990

7. Poole, L.R., and M.P. McCormick, Major Results From SAGE II, NATO ASI, Series 18, Springer-Verlag, Berlin and Heidelberg, I, 8, 377-386; 1993

8. Russell, P.B., and M.P. McCormick, SAGE II Aerosol Data Validation And Initial Data Use: An Introduction And Overview, J. Geophys. Res., 94, 8335-8338; 1989

9. Thomason, L.W., S.P. Burton, N. Iyer, J.M. Zawodny, and J. Anderson, A Revised Water Vapor Product for the SAGE II version 6.2 Data Set, J. Geophys. Res., 109, doi:10.1029/2003JD004465, 2004

10. Zawodny, J.M., and M.P. McCormick, Stratospheric Aerosol And Gas Experiment II Measurements Of The Quasi-Biennial Oscillations In Ozone And Nitrogen Dioxide, J. Geophys. Res., 96, D5, 9371-9377, May 20. 1991

11. Parameswaran, K., Rose, K. O., Murthy, B. V. K., Osborn, M. T., and McMaster, L. R. (1991), Comparison of aerosol extinction profiles from lidar and SAGE II data at a tropical station, J. Geophys. Res., 96( D6), 1086110866, doi:10.1029/91JD01044.

12. S. P. Burton, L. W. Thomason, Y. Sasano, S. Hayashida, Comparison of aerosol extinction measurements by ILAS and SAGE II, Geophysical Research Letters, 26, 1719-1722, https://doi.org/10.1029/1999GL900359, 1999.

13. Donald P. Wylie, Pi-Huan Wang, Comparison of SAGE-II and HIRS co-located cloud height measurements, Geophysical Research Letters, 26, 3373-3375, https://doi.org/10.1029/1999GL010857, 1999.

14. Reeves, J. M., Wilson, J. C., Brock, C. A., and Bui, T. P. (2008), Comparison of aerosol extinction coefficients, surface area density, and volume density from SAGE II and in situ aircraft measurements, J. Geophys. Res., 113, D10202, doi:10.1029/2007JD009357.

15. Parrish, A., Boyd, I. S., Zawodny, J. M., Thomason, L. W., Bodeker, G. E., and Connor, B. J. (2003), Relative performance of three SAGE-II data versions under high aerosol conditions based on comparisons with microwave and ozonesonde profiles measured at two NDSC sites, J. Geophys. Res., 108, 4172, doi:10.1029/2002JD002461, D5.

16. Bauman, J. J., Russell, P. B., Geller, M. A., and Hamill, P. (2003), A stratospheric aerosol climatology from SAGE II and CLAES measurements: 2. Results and comparisons, 1984–1999, J. Geophys. Res., 108, 4383, doi:10.1029/2002JD002993, D13.

17. McCormick, M. P., Swissler, T. J., Hilsenrath, E., Krueger, A. J., and Osborn, M. T. (1984), Satellite and correlative measurements of stratospheric ozone: Comparison of measurements made by SAGE, ECC balloons, chemiluminescent, and optical rocketsondes, J. Geophys. Res., 89( D4), 53155320, doi:10.1029/JD089iD04p05315.

18. Taha, G., Thomason, L. W., and Burton, S. P. (2004), Comparison of Stratospheric Aerosol and Gas Experiment (SAGE) II version 6.2 water vapor with balloon-borne and space-based instruments, J. Geophys. Res., 109, D18313, doi:10.1029/2004JD004859.

19. Liao, X., Rossow, W. B., and Rind, D. (1995), Comparison between SAGE II and ISCCP high-level clouds: 1. Global and zonal mean cloud amounts, J. Geophys. Res., 100( D1), 11211135, doi:10.1029/94JD02429.

20. Michelsen, H. A., et al., ATMOS version 3 water vapor measurements: Comparisons with observations from two ER-2 Lyman-α hygrometers, MkIV, HALOE, SAGE II, MAS, and MLS, J. Geophys. Res., 107( D3), doi:10.1029/2001JD000587, 2002.

21. Nazaryan, H., McCormick, M. P., and Russell, J. M. (2005), New studies of SAGE II and HALOE ozone profile and long-term change comparisons, J. Geophys. Res., 110, D09305, doi:10.1029/2004JD005425.

22. Morris, G. A., Gleason, J. F., Russell, J. M., Schoeberl, M. R., and McCormick, M. P., A comparison of HALOE V19 with SAGE II V6.00 ozone observations using trajectory mapping, J. Geophys. Res., 107( D13), doi:10.1029/2001JD000847, 2002.

23. Randall, C. E., Bevilacqua, R. M., Lumpe, J. D., Hoppel, K. W., Rusch, D. W., and Shettle, E. P. (2000), Comparison of Polar Ozone and Aerosol Measurement (POAM) II and Stratospheric Aerosol and Gas Experiment (SAGE) II aerosol measurements from 1994 to 1996, J. Geophys. Res., 105( D3), 39293942, doi:10.1029/1999JD901024.

24. Randall, C. E., Bevilacqua, R. M., Lumpe, J. D., and Hoppel, K. W. (2001), Validation of POAM III aerosols: Comparison to SAGE II and HALOE, J. Geophys. Res., 106( D21), 2752527536, doi:10.1029/2001JD000528.

25. Smyshlyaev, S. P., and Geller, M. A. (2001), Analysis of SAGE II observations using data assimilation by the SUNY-SPB two-dimensional model and comparison to TOMS data, J. Geophys. Res., 106( D23), 3232732335, doi:10.1029/2001JD000353.

26. Thomason, L. W., Herber, A. B., Yamanouch, T., and Sato, K. (2003), Arctic Study on Tropospheric Aerosol and Radiation: Comparison of tropospheric aerosol extinction profiles measured by airborne photometer and SAGE II, Geophys. Res. Lett., 30, 1328, doi:10.1029/2002GL016453, 6.

27. Yue, G.K., Veiga, R.E., Poole, L.R., Zawodny, J.M. and Proffitt, M.H. (1994), Estimated SAGE II ozone mixing ratios in early 1993 and comparisons with stratospheric photochemistry, aerosols and dynamics expedition measurements. Geophys. Res. Lett., 21: 2607-2610. https://doi.org/10.1029/94GL02282

28. Nazaryan, H., and McCormick, M. P. (2005), Comparisons of Stratospheric Aerosol and Gas Experiment (SAGE II) and Solar Backscatter Ultraviolet Instrument (SBUV/2) ozone profiles and trend estimates, J. Geophys. Res., 110, D17302, doi:10.1029/2004JD005483.

29. De Muer, D., De Backer, H., Veiga, R. E., and Zawodny, J. M. (1990), Comparison of SAGE II ozone measurements and ozone soundings at Uccle (Belgium) during the period February 1985 to January 1986, J. Geophys. Res., 95( D8), 1190311911, doi:10.1029/JD095iD08p11903.

30. Liao, X., Rossow, W. B., and Rind, D. (1995), Comparison between SAGE II and ISCCP high-level clouds: 2. Locating cloud tops, J. Geophys. Res., 100( D1), 11371147, doi:10.1029/94JD02430.

31. Cunnold, D. M., Wang, H., Chu, W. P., and Froidevaux, L. (1996), Comparisons between Stratospheric Aerosol and Gas Experiment II and microwave limb sounder ozone measurements and aliasing of SAGE II ozone trends in the lower stratosphere, J. Geophys. Res., 101( D6), 1006110075, doi:10.1029/95JD01707.

32. McPeters, R. D., Miles, T., Flynn, L. E., Wellemeyer, C. G., and Zawodny, J. M. (1994), Comparison of SBUV and SAGE II ozone profiles: Implications for ozone trends, J. Geophys. Res., 99( D10), 2051320524, doi:10.1029/94JD02008.

33. Danilin, M. Y., et al., Comparison of ER-2 aircraft and POAM III, MLS, and SAGE II satellite measurements during SOLVE using traditional correlative analysis and trajectory hunting technique, J. Geophys. Res., 107, 8315, doi:10.1029/2001JD000781, 2002. [printed 108( D5), 2003]

34. Wang, P.-H., et al. (1989), SAGE II aerosol data validation based on retrieved aerosol model size distribution from SAGE II aerosol measurements, J. Geophys. Res., 94( D6), 83818393, doi:10.1029/JD094iD06p08381.

35. Ackerman, M., et al. (1989), European validation of SAGE II aerosol profiles, J. Geophys. Res., 94( D6), 83998411, doi:10.1029/JD094iD06p08399.

36. Russell, P. B., and McCormick, M. P. (1989), SAGE II aerosol data validation and initial data use: An introduction and overview, J. Geophys. Res., 94( D6), 83358338, doi:10.1029/JD094iD06p08335.

37. Cunnold, D. M., Chu, W. P., Barnes, R. A., McCormick, M. P., and Veiga, R. E. (1989), Validation of SAGE II ozone measurements, J. Geophys. Res., 94( D6), 84478460, doi:10.1029/JD094iD06p08447.

38. Attmannspacher, W., de la Noé, J., de Muer, D., Lenoble, J., Mégie, G., Pelon, J., Pruvost, P., and Reiter, R. (1989), European validation of SAGE II ozone profiles, J. Geophys. Res., 94( D6), 84618466, doi:10.1029/JD094iD06p08461.

39. Oberbeck, V. R., Livingston, J. M., Russell, P. B., Pueschel, R. F., Rosen, J. N., Osborn, M. T., Kritz, M. A., Snetsinger, K. G., and Ferry, G. V. (1989), SAGE II aerosol validation: Selected altitude measurements, including particle micromeasurements, J. Geophys. Res., 94( D6), 83678380, doi:10.1029/JD094iD06p08367.

40. Antuña, J. C., Robock, A., Stenchikov, G. L., Thomason, L. W., and Barnes, J. E., Lidar validation of SAGE II aerosol measurements after the 1991 Mount Pinatubo eruption, J. Geophys. Res., 107 ( D14), doi:10.1029/2001JD001441, 2002.

41. Rusch, D. W., et al. (1997), Validation of POAM ozone measurements with coincident MLS, HALOE, and SAGE II observations, J. Geophys. Res., 102( D19), 2361523627, doi:10.1029/97JD00458.

42. Cunnold, D. M., et al. (1991), Validation of SAGE II NO2 measurements, J. Geophys. Res., 96( D7), 1291312925, doi:10.1029/91JD01344.

43. Borchi, F., and Pommereau, J.-P., Evaluation of ozonesondes, HALOE, SAGE II and III, Odin- OSIRIS and -SMR, and ENVISAT-GOMOS, 0SCIAMACHY and -MIPAS ozone profiles in the tropics from SAOZ long duration balloon measurements in 2003 and 2004, Atmos. Chem. Phys., 7, 2671-2690, 2007.

44. Borchi, F., Pommereau, J.-P., Garnier, A., and Pinharanda, M.: Evaluation of SHADOZ sondes, HALOE and SAGE II ozone profiles at the tropics from SAOZ UV-Vis remote measurements onboard long duration balloons, Atmos. Chem. Phys., 5, 1381–1397, https://doi.org/10.5194/acp-5-1381-2005, 2005.

45. Bingen, C., Vanhellemont, F., and Fussen, D.: A new regularized inversion method for the retrieval of stratospheric aerosol size distributions applied to 16 years of SAGE II data (1984–2000): method, results and validation, Ann. Geophys., 21, 797–804, https://doi.org/10.5194/angeo-21-797-2003, 2003.

46. E. W. Chiou, L. W. Thomason, and W. P. Chu.: Variability of Stratospheric Water Vapor Inferred from SAGE II, HALOE, and Boulder (Colorado) Balloon Measurements, Journal of Climate, 19, 4121-4133, https://doi.org/10.1175/JCLI3841.1, 2006.

47. G. S. Kent, E. R. Williams, P-H. Wang, M. P. McCormick, and K. M. Skeens.: Surface Temperature Related Variations in Tropical Cirrus Cloud as Measured by SAGE II, Journal of Climate, 8, 2577-2594, https://doi.org/10.1175/1520-0442(1995)008<2577:STRVIT>2.0.CO;2, 1995.

48. Glenn K. Yue, M. P. McCormick, and W. P. Chu.: Retrieval of Composition and Size Distribution of Stratospheric Aerosols with the SAGE II Satellite Experiment, Journal of Atmospheric and Oceanic Technology, 3, 371-380, https://doi.org/10.1175/1520-0426(1986)003<0371:ROCASD>2.0.CO;2, 1986.

49. Yu Liu, Xuepeng Zhao, Weiliang Li, and Xiuji Zhou: Background Stratospheric Aerosol Variations Deduced from Satellite Observations, Journal of Applied Meteorology and Climatology, 51, 799-812, https://doi.org/10.1175/JAMC-D-11-016.1, 2012.

50. Remsberg, E. and Lingenfelser, G.: Analysis of SAGE II ozone of the middle and upper stratosphere for its response to a decadal-scale forcing, Atmos. Chem. Phys., 10, 11779–11790, https://doi.org/10.5194/acp-10-11779-2010, 2010.

51. Wurl, D., Grainger, R. G., McDonald, A. J., and Deshler, T.: Optimal estimation retrieval of aerosol microphysical properties from SAGE~II satellite observations in the volcanically unperturbed lower stratosphere, Atmos. Chem. Phys., 10, 4295–4317, https://doi.org/10.5194/acp-10-4295-2010, 2010.

52. Thomason, L. W., Burton, S. P., Luo, B.-P., and Peter, T.: SAGE II measurements of stratospheric aerosol properties at non-volcanic levels, Atmos. Chem. Phys., 8, 983–995, https://doi.org/10.5194/acp-8-983-2008, 2008

53. Chu, W. P., McCormick, M. P., Lenoble, J., Brogniez, C., and Pruvost, P. (1989), SAGE II inversion algorithm, J. Geophys. Res., 94( D6), 83398351, doi:10.1029/JD094iD06p08339.

54. Derek M. Cunnold, Robert E. Veiga, Preliminary assessment of possible aerosol contamination effects on SAGE ozone trends in the lower stratosphere, Advances in Space Research, Volume 11, Issue 3, 1991, Pages 5-8, ISSN 0273-1177, https://doi.org/10.1016/0273-1177(91)90396-2

55. M. Patrick McCormick, Robert E. Veiga, William P. Chu: Stratospheric ozone profile and total ozone trends derived from the SAGE I and SAGE II data, Geophysical Research Letters, 19, 269-272, https://doi.org/10.1029/92GL00187, 1992.

56. Steele, H. M., and Turco, R. P. (1997), Separation of aerosol and gas components in the Halogen Occultation Experiment and the Stratospheric Aerosol and Gas Experiment (SAGE) II extinction measurements: Implications for SAGE II ozone concentrations and trends, J. Geophys. Res., 102( D16), 1966519681, doi:10.1029/97JD01263.

57. Cunnold, D. M., Wang, H. J., Thomason, L. W., Zawodny, J. M., Logan, J. A., and Megretskaia, I. A. (2000), SAGE (version 5.96) ozone trends in the lower stratosphere, J. Geophys. Res., 105( D4), 44454457, doi:10.1029/1999JD900976.

58. Randel, W. J., and Thompson, A. M. (2011), Interannual variability and trends in tropical ozone derived from SAGE II satellite data and SHADOZ ozonesondes, J. Geophys. Res., 116, D07303, doi:10.1029/2010JD015195, 2011.

59. Li, J., Cunnold, D. M., Wang, H.-J., Yang, E.-S., and Newchurch, M. J., A discussion of upper stratospheric ozone asymmetries and SAGE trends, J. Geophys. Res., 107 (D23), 4705, doi:10.1029/2001JD001398, 2002.

60. Terao, Yukio & Logan, Jennifer. (2006). Consistency of time series and trends of stratospheric ozone as seen by ozonesonde, SAGE II, HALOE, and SBUV (/2). Journal of Geophysical Research. 112. doi:10.1029/2006JD007667.

61. Wang, P.-H., Cunnold, D. M., Trepte, C. R., Wang, H. J., Jing, P., Fishman, J., Brackett, V. G., Zawodney, J. M., and Bodeker, G. E. (2006), Ozone variability in the midlatitude upper troposphere and lower stratosphere diagnosed from a monthly SAGE II climatology relative to the tropopause, J. Geophys. Res., 111, D21304, doi:10.1029/2005JD006108.

62. Remsberg, E. E.: Further analyses of the decadal-scale responses and trends in middle and upper stratospheric ozone from SAGE II and HALOE, Atmos. Chem. Phys. Discuss., 11, 25011–25036, https://doi.org/10.5194/acpd-11-25011-2011, 2011.

63. Remsberg, E. and Lingenfelser, G.: Analysis of SAGE II ozone of the middle and upper stratosphere for its response to a decadal-scale forcing, Atmos. Chem. Phys., 10, 11779–11790, https://doi.org/10.5194/acp-10-11779-2010, 2010.

64. McLinden, C. A., Tegtmeier, S., and Fioletov, V.: Technical Note: A SAGE-corrected SBUV zonal-mean ozone data set, Atmos. Chem. Phys., 9, 7963–7972, https://doi.org/10.5194/acp-9-7963-2009, 2009.

65. Mclinden, Chris & Tegtmeier, Susann & Fioletov, Vitali. (2009). Technical Note: a combined SBUV and SAGE zonal-mean ozone data set. ATMOSPHERIC CHEMISTRY AND PHYSICS. doi: 10.5194/acpd-9-12385-2009.

66. Tranchant, B. J. S. and Vincent, A. P.: Statistical interpolation of ozone measurements from satellite data (TOMS, SBUV and SAGE II) using the kriging method, Ann. Geophys., 18, 666–678, https://doi.org/10.1007/s00585-000-0666-x, 2000.

67. Randel, W., & Wu, F. (1996), Isolation of the ozone QBO in SAGE II data by singular-value decomposition, Journal Of The Atmospheric Sciences, 53, 2546-2559. doi:10.1175/1520-0469(1996)053<2546:IOTOQI>2.0.CO;2

68. Wang, P., McCormick, M., & Chu, W. (1983), A Study on the Planetary Wave Transport of Ozone during the Late February 1979 Stratospheric Warming Using the SAGE Ozone Observation and Meteorological Information, Journal of the Atmospheric Sciences, 40, 2419-2431, doi: https://doi.org/10.1175/1520-0469(1983)040%3C2419:ASOTPW%3E2.0.CO;2.

69. Lehmann, P. (2000), A study of the morphology of midstratospheric ozone minima using SAGE II data, J. Geophys. Res., 105( D13), 1730717324, doi:10.1029/2000JD900200.

70. Kar, J., Trepte, C. R., Thomason, L. W., and Zawodny, J. M., Observations of layers in ozone vertical profiles from SAGE II (v 6.0) measurements, Geophys. Res. Lett., 29( 10), doi:10.1029/2001GL014230, 2002.

71. Wang, P.-H., Fishman, J., Harvey, V. L., and Hitchman, M. H. (2006), Southern tropical upper tropospheric zonal ozone wave-1 from SAGE II observations (1985–2002), J. Geophys. Res., 111, D08305, doi:10.1029/2005JD006221.

72. Bracher, A., Weber, M., Bramstedt, K., Tellmann, S., and Burrows, J. P. (2004), Long-term global measurements of ozone profiles by GOME validated with SAGE II considering atmospheric dynamics, J. Geophys. Res., 109, D20308, doi:10.1029/2004JD004677.

73. Wang, P.-H., Cunnold, D. M., Zawodny, J. M., Pierce, R. B., Olson, J. R., Kent, G. S., and Skeens, K. M. (1998), Seasonal ozone variations in the isentropic layer between 330 and 380 K as observed by SAGE II: Implications of extratropical cross-tropopause transport, J. Geophys. Res., 103( D22), 2864728659, doi:10.1029/98JD02797.

74. Wang, H. J., Cunnold, D. M., Thomason, L. W., Zawodny, J. M., and Bodeker, G. E., Assessment of SAGE version 6.1 ozone data quality, J. Geophys. Res., 107( D23), 4691, doi:10.1029/2002JD002418, 2002.

75. Kar, J., Trepte, C. R., Thomason, L. W., Zawodny, J. M., Cunnold, D. M., and Wang, H. J., On the tropospheric measurements of ozone by the Stratospheric Aerosol and Gas Experiment II (SAGE II, version 6.1) in the tropics, Geophys. Res. Lett., 29( 24), 2208, doi:10.1029/2002GL016241, 2002.

76. McCormick, M., & Larsen, J. (1988). Antarctic measurements of ozone by SAGE II in the spring of 1985, 1986, and 1987. Geophysical Research Letters, 15, 907-910, doi:10.1029/GL015I008P00907.

77. Wang, H. J., Cunnold, D. M., and Bao, X. (1996), A critical analysis of Stratospheric Aerosol and Gas Experiment ozone trends, J. Geophys. Res., 101( D7), 1249512514, doi:10.1029/96JD00581.

78. M. P. Chipperfield, L. J. Gray, J. S. Kinnersley, J. Zawodny, A Two-Dimensional Model Study of the QBO Signal in SAGE II NO2 and O3, Geophysical Research Letters, 21, 589-592, doi: 10.1029/94GL00211, 1994.

79. M.P. McCormick, J.M. Zawodny, R.E. Veiga, J.C. Larsen, P.H. Wang, An overview of sage I and II ozone measurements, Planetary and Space Science, Volume 37, Issue 12, 1989, Pages 1567-1586, ISSN 0032-0633, https://doi.org/10.1016/0032-0633(89)90146-3.

57. Cunnold, D. M., Wang, H. J., Thomason, L. W., Zawodny, J. M., Logan, J. A., and Megretskaia, I. A. (2000), SAGE (version 5.96) ozone trends in the lower stratosphere, J. Geophys. Res., 105( D4), 44454457, doi:10.1029/1999JD900976.

58. Randel, W. J., and Thompson, A. M. (2011), Interannual variability and trends in tropical ozone derived from SAGE II satellite data and SHADOZ ozonesondes, J. Geophys. Res., 116, D07303, doi:10.1029/2010JD015195, 2011.

59. Li, J., Cunnold, D. M., Wang, H.-J., Yang, E.-S., and Newchurch, M. J., A discussion of upper stratospheric ozone asymmetries and SAGE trends, J. Geophys. Res., 107 (D23), 4705, doi:10.1029/2001JD001398, 2002.

60. Terao, Yukio & Logan, Jennifer. (2006). Consistency of time series and trends of stratospheric ozone as seen by ozonesonde, SAGE II, HALOE, and SBUV (/2). Journal of Geophysical Research. 112. doi:10.1029/2006JD007667.

61. Wang, P.-H., Cunnold, D. M., Trepte, C. R., Wang, H. J., Jing, P., Fishman, J., Brackett, V. G., Zawodney, J. M., and Bodeker, G. E. (2006), Ozone variability in the midlatitude upper troposphere and lower stratosphere diagnosed from a monthly SAGE II climatology relative to the tropopause, J. Geophys. Res., 111, D21304, doi:10.1029/2005JD006108.

62. Remsberg, E. E.: Further analyses of the decadal-scale responses and trends in middle and upper stratospheric ozone from SAGE II and HALOE, Atmos. Chem. Phys. Discuss., 11, 25011–25036, https://doi.org/10.5194/acpd-11-25011-2011, 2011.

63. Remsberg, E. and Lingenfelser, G.: Analysis of SAGE II ozone of the middle and upper stratosphere for its response to a decadal-scale forcing, Atmos. Chem. Phys., 10, 11779–11790, https://doi.org/10.5194/acp-10-11779-2010, 2010.

64. McLinden, C. A., Tegtmeier, S., and Fioletov, V.: Technical Note: A SAGE-corrected SBUV zonal-mean ozone data set, Atmos. Chem. Phys., 9, 7963–7972, https://doi.org/10.5194/acp-9-7963-2009, 2009.

65. Mclinden, Chris & Tegtmeier, Susann & Fioletov, Vitali. (2009). Technical Note: a combined SBUV and SAGE zonal-mean ozone data set. ATMOSPHERIC CHEMISTRY AND PHYSICS. doi: 10.5194/acpd-9-12385-2009.

66. Tranchant, B. J. S. and Vincent, A. P.: Statistical interpolation of ozone measurements from satellite data (TOMS, SBUV and SAGE II) using the kriging method, Ann. Geophys., 18, 666–678, https://doi.org/10.1007/s00585-000-0666-x, 2000.

67. Randel, W., & Wu, F. (1996), Isolation of the ozone QBO in SAGE II data by singular-value decomposition, Journal Of The Atmospheric Sciences, 53, 2546-2559. doi:10.1175/1520-0469(1996)053<2546:IOTOQI>2.0.CO;2

68. Wang, P., McCormick, M., & Chu, W. (1983), A Study on the Planetary Wave Transport of Ozone during the Late February 1979 Stratospheric Warming Using the SAGE Ozone Observation and Meteorological Information, Journal of the Atmospheric Sciences, 40, 2419-2431, doi: https://doi.org/10.1175/1520-0469(1983)040%3C2419:ASOTPW%3E2.0.CO;2.

69. Lehmann, P. (2000), A study of the morphology of midstratospheric ozone minima using SAGE II data, J. Geophys. Res., 105( D13), 1730717324, doi:10.1029/2000JD900200.

70. Kar, J., Trepte, C. R., Thomason, L. W., and Zawodny, J. M., Observations of layers in ozone vertical profiles from SAGE II (v 6.0) measurements, Geophys. Res. Lett., 29( 10), doi:10.1029/2001GL014230, 2002.

71. Wang, P.-H., Fishman, J., Harvey, V. L., and Hitchman, M. H. (2006), Southern tropical upper tropospheric zonal ozone wave-1 from SAGE II observations (1985–2002), J. Geophys. Res., 111, D08305, doi:10.1029/2005JD006221.

72. Bracher, A., Weber, M., Bramstedt, K., Tellmann, S., and Burrows, J. P. (2004), Long-term global measurements of ozone profiles by GOME validated with SAGE II considering atmospheric dynamics, J. Geophys. Res., 109, D20308, doi:10.1029/2004JD004677.

73. Wang, P.-H., Cunnold, D. M., Zawodny, J. M., Pierce, R. B., Olson, J. R., Kent, G. S., and Skeens, K. M. (1998), Seasonal ozone variations in the isentropic layer between 330 and 380 K as observed by SAGE II: Implications of extratropical cross-tropopause transport, J. Geophys. Res., 103( D22), 2864728659, doi:10.1029/98JD02797.

74. Wang, H. J., Cunnold, D. M., Thomason, L. W., Zawodny, J. M., and Bodeker, G. E., Assessment of SAGE version 6.1 ozone data quality, J. Geophys. Res., 107( D23), 4691, doi:10.1029/2002JD002418, 2002.

75. Kar, J., Trepte, C. R., Thomason, L. W., Zawodny, J. M., Cunnold, D. M., and Wang, H. J., On the tropospheric measurements of ozone by the Stratospheric Aerosol and Gas Experiment II (SAGE II, version 6.1) in the tropics, Geophys. Res. Lett., 29( 24), 2208, doi:10.1029/2002GL016241, 2002.

76. McCormick, M., & Larsen, J. (1988). Antarctic measurements of ozone by SAGE II in the spring of 1985, 1986, and 1987. Geophysical Research Letters, 15, 907-910, doi:10.1029/GL015I008P00907.

77. Wang, H. J., Cunnold, D. M., and Bao, X. (1996), A critical analysis of Stratospheric Aerosol and Gas Experiment ozone trends, J. Geophys. Res., 101( D7), 1249512514, doi:10.1029/96JD00581.

78. M. P. Chipperfield, L. J. Gray, J. S. Kinnersley, J. Zawodny, A Two-Dimensional Model Study of the QBO Signal in SAGE II NO2 and O3, Geophysical Research Letters, 21, 589-592, doi: 10.1029/94GL00211, 1994.

79. M.P. McCormick, J.M. Zawodny, R.E. Veiga, J.C. Larsen, P.H. Wang, An overview of sage I and II ozone measurements, Planetary and Space Science, Volume 37, Issue 12, 1989, Pages 1567-1586, ISSN 0032-0633, https://doi.org/10.1016/0032-0633(89)90146-3.

80. Randel, W. J., and Wu, F. (2007), A stratospheric ozone profile data set for 1979–2005: Variability, trends, and comparisons with column ozone data, J. Geophys. Res., 112, D06313, doi:10.1029/2006JD007339.

81. Shiotani, M., and Hasebe, F. (1994), Stratospheric ozone variations in the equatorial region as seen in Stratospheric Aerosol and Gas Experiment data, J. Geophys. Res., 99( D7), 1457514584, doi:10.1029/94JD00741.

82. Cunnold, D. M., Newchurch, M. J., Flynn, L. E., Wang, H. J., Russell, J. M., McPeters, R., Zawodny, J. M., and Froidevaux, L. (2000), Uncertainties in upper stratospheric ozone trends from 1979 to 1996, J. Geophys. Res., 105( D4), 44274444, doi:10.1029/1999JD900313.

83. Cunnold, D. M., Froidevaux, L., Russell, J. M., Connor, B., and Roche, A. (1996), Overview of UARS ozone validation based primarily on intercomparisons among UARS and Stratospheric Aerosol and Gas Experiment II measurements, J. Geophys. Res., 101( D6), 1033510350, doi:10.1029/95JD01697.

84. Kent, G. S., Winker, D. M., Osborn, M. T., and Skeens, K. M. (1993), A model for the separation of cloud and aerosol in SAGE II occultation data, J. Geophys. Res., 98( D11), 2072520735, doi:10.1029/93JD00340.

85. Thomason, L. W. (1991), A diagnostic stratospheric aerosol size distribution inferred from SAGE II measurements, J. Geophys. Res., 96( D12), 2250122508, doi:10.1029/91JD02521.

86. Brock, C., Jonsson, H., Wilson, J., Dye, J., Baumgardner, D., Borrmann, S., Pitts, M., Osborn, M., DeCoursey, R., & Woods, D. (1993). Relationships between Optical Extinction, Backscatter and Aerosol Surface and Volume in the Stratosphere following the Eruption of Mt. Pinatubo. Geophysical Research Letters, 20, 2555-2558, doi: 10.1029/93GL01691.

87. Brogniez, C., and Lenoble, J. (1991), Analysis of 5-year aerosol data from the Stratospheric Aerosol and Gas Experiment II, J. Geophys. Res., 96( D8), 1547915497, doi:10.1029/91JD01280.

88. Kent, G. S., Wang, P.-H., McCormick, M. P., and Skeens, K. M. (1995), Multiyear Stratospheric Aerosol and Gas Experiment II measurements of upper tropospheric aerosol characteristics, J. Geophys. Res., 100( D7), 1387513899, doi:10.1029/95JD00017.

89. Yue, G. K., McCormick, M. P., and Chiou, E. W. (1991), Stratospheric aerosol optical depth observed by the Stratospheric Aerosol and Gas Experiment II: Decay of the El Chichon and Ruiz volcanic perturbations, J. Geophys. Res., 96( D3), 52095219, doi:10.1029/90JD02227.

90. Brogniez, C., Santer, R., Diallo, B. S., Herman, M., Lenoble, J., and Jäger, H. (1992), Comparative observations of stratospheric aerosols by ground-based lidar, balloon-borne polarimeter, and satellite solar occultation, J. Geophys. Res., 97( D18), 2080520823, doi:10.1029/92JD01919.

91. Colette Brogniez, Jacqueline Lenoble, and Maurice Herman “Post-Pinatubo’s aerosols: comparison between balloon and satellite solar occultation measurements”, Proc. SPIE 2311, Atmospheric Sensing and Modelling, (4 January 1995); https://doi.org/10.1117/12.198591.

92. Brogniez, C., Lenoble, J., Herman, M., Lecomte, P., and Verwaerde, C. (1996), Analysis of two balloon experiments in coincidence with SAGE II in case of large stratospheric aerosol amount: Post-Pinatubo period, J. Geophys. Res., 101( D1), 15411552, doi:10.1029/95JD01640.

93. Burton, S. P., and Thomason, L. W. (2003), Molecular density retrieval and temperature climatology for 40–60 km from SAGE II, J. Geophys. Res., 108, 4593, doi:10.1029/2003JD003605, D19.

94. L.B. Callis, An examination of global variations of sunset NO2 as measured by SAGE II, Advances in Space Research, Volume 14, Issue 1, 1994, Pages 219-222, ISSN 0273-1177, https://doi.org/10.1016/0273-1177(94)90373-5.

95. Chiou, E. W., McCormick, M. P., McMaster, L. R., Chu, W. P., Larsen, J. C., Rind, D., and Oltmans, S. (1993), Intercomparison of stratospheric water vapor observed by satellite experiments: Stratospheric Aerosol and Gas Experiment II versus Limb Infrared Monitor of the Stratosphere and Atmospheric Trace Molecule Spectroscopy, J. Geophys. Res., 98( D3), 48754887, doi:10.1029/92JD01629.

96. E.W. Chiou, E.E. Remsberg, C.D. Rodgers, R. Munro, R.M. Bevilacqua, M.P. McCormick, J.M. Russell, Proposed reference model for middle atmosphere water vapor, Advances in Space Research, Volume 18, Issues 9–10, 1996, Pages 59-89, ISSN 0273-1177, https://doi.org/10.1016/0273-1177(96)00051-8.

97. Chiou, E. W., McCormick, M. P., and Chu, W. P. (1997), Global water vapor distributions in the stratosphere and upper troposphere derived from 5.5 years of SAGE II observations (1986–1991), J. Geophys. Res., 102( D15), 1910519118, doi:10.1029/97JD01371.

98. Rind, D., Chiou, E.-W., Chu, W., Oltmans, S., Lerner, J., Larsen, J., McCormick, M. P., and McMaster, L. (1993), Overview of the Stratospheric Aerosol and Gas Experiment II water vapor observations: Method, validation, and data characteristics, J. Geophys. Res., 98( D3), 48354856, doi:10.1029/92JD01174.

99. Chiou, E.-W., Thomason, L. W., Burton, S. P., and Michelsen, H. A. (2004), Assessment of the SAGE II version 6.2 water vapor data set through intercomparison with ATMOS/ATLAS-3 measurements, Geophys. Res. Lett., 31, L14101, doi:10.1029/2004GL020071.

100. Chu, W. P., Chiou, E. W., Larsen, J. C., Thomason, L. W., Rind, D., Buglia, J. J., Oltmans, S., McCormick, M. P., and McMaster, L. M. (1993), Algorithms and sensitivity analyses for Stratospheric Aerosol and Gas Experiment II water vapor retrieval, J. Geophys. Res., 98( D3), 48574866, doi:10.1029/92JD01628.

101. Genio, A., Kovari, W., & Yao, M., (1994), Climatic implications of the seasonal variation of upper troposphere water vapor, Geophysical Research Letters, 21, 2701-2704, doi: 10.1029/94GL02658.

102. D. Fussen, C. Bingen, A volcanism dependent model for the extinction profile of stratospheric aerosols in the UV-visible range, Geophysical Research Letters, 26, 703-706, doi: 10.1029/1999GL900082, 1999.

103. Herber, A., Thomason, L. W., Radionov, V. F., and Leiterer, U. (1993), Comparison of trends in the tropospheric and stratospheric aerosol optical depths in the Antarctic, J. Geophys. Res., 98( D10), 1844118447, doi:10.1029/93JD01666.

104. Matthew H. Hitchman, Megan McKay, and Charles R. Trepte, A climatology of stratospheric aerosol, Journal of Geophysical Research, 99, 20689-20700, 1994.

105. Wang, Pi-Huan & Mccormick, M. & Minnis, Patrick & Kent, Geoffrey & Yue, Glenn & Skeens, Kristi, A method for estimating vertical distibution of the SAGE II opaque cloud frequency, Geophysical Research Letters, 22, 243-246, doi: 10.1029/94GL02992, 1995.

106. Labitzke, K., & McCormick, M., Stratospheric temperature increases due to Pinatubo aerosols, Geophysical Research Letters, 19, 207-210, doi: 10.1029/91GL02940, 1992.

107. Larsen, J. C., Chiou, E. W., Chu, W. P., McCormick, M. P., McMaster, L. R., Oltmans, S., and Rind, D. (1993), A comparison of the Stratospheric Aerosol and Gas Experiment II tropospheric water vapor to radiosonde measurements, J. Geophys. Res., 98( D3), 48974917, doi:10.1029/92JD01630.

108. Lu, J., Mohnen, V. A., Yue, G. K., and Jäger, H. (1997), Intercomparison of multiplatform stratospheric aerosol and ozone observations, J. Geophys. Res., 102( D13), 1612716136, doi:10.1029/97JD01016.

109. Osborn, M. T., Rosen, J. M., McCormick, M. P., Wang, P.-H., Livingston, J. M., and Swissler, T. J. (1989), SAGE II aerosol correlative observations: Profile measurements, J. Geophys. Res., 94( D6), 83538366, doi:10.1029/JD094iD06p08353.

110. Yue, G., Thomason, L., Poole, L., Wang, P., Baumgardner, D., & Dye, J., Aerosol surface areas deduced from early 1993 SAGE II data and comparisons with stratospheric photochemistry, aerosols, and Dynamics Expedition measurements, Geophysical Research Letters, 22, 2933-2936, doi: 10.1029/95GL02941, 1995.

111. Kent, G. S., McCormick, M. P., and Wang, P.-H. (1994), Validation of Stratospheric Aerosol and Gas Experiments I and II satellite aerosol optical depth measurements using surface radiometer data, J. Geophys. Res., 99( D5), 1033310339, doi:10.1029/94JD00167.

112. M.P. McCormick, P.-H. Wang, M.C. Pitts, Background stratospheric aerosol and polar stratospheric cloud reference models, Advances in Space Research, Volume 18, Issues 9–10, Pages 155177, ISSN 0273-1177, https://doi.org/10.1016/0273-1177(96)00057-9, 1996.

SAGE II Science Team Members:

Derek M. Cunnold, Massachusetts Institute of Technology

Georgio Fiocco, Inst. Di Fisica dell’Atmosfera

Gerald W. Grams, Georgia Institute of Technology

M. Hilrono, Kyushu University, Japan

Ronald M. Nagatani, NOAA, National Met. Center

Jennifer le Noble, Universite de Lille, France

M Pat McCormick, Hampton University (Previously NASA Langley Research Center)

David G. Murcray, University of Denver

Theodore J. Pepin, University of Wyoming

David H. Rind, Goddard Institute for Space Studies

Phillip B. Russell, SRI International Science

After nearly 21 years, the SAGE II Instrument on the ERBS platform was powered off on August 22, 2005.

NASA’s retired Earth Radiation Budget Satellite (ERBS) reentered Earth’s atmosphere at 11:04 p.m. EST on Sunday, January 8, 2023 after almost four decades in space.
Retired NASA Earth Radiation Budget Satellite Reenters Atmosphere

R_1984-L-06981 003

SAGE II on ERBS in 1984 before launch.